Шум вокруг нас

Шум вокруг нас
Доктор физико-математических наук А. ВЯЛЫШЕВ, главный специалист МЧС России

«Когда-нибудь человеку придется ради своего существования столь же упорно бороться с шумом, как он борется сейчас с холерой и чумой».
Роберт Кох

Считается, что городские жители давно свыклись с высоким уровнем шума. Но не стоит забывать, что шум нарушает психологический комфорт человека, плохо влияет на состояние вегетативной нервной системы, а иногда поражает и слуховой аппарат, вызывая тугоухость.

Откуда берется техногенный шум, каковы его характеристики, в чем заключаются основные принципы и современные методы защиты от него, как обеспечить тишину в собственной квартире? Эта статья ответит и на другие вопросы, волнующие многих читателей.

Что такое шум? Это не несущий полезной информации или случайный звук, мешающий окружающим либо причиняющий им значитель ные неудобства. Один и тот же звук, в зависимости от ситуации, может оказаться как шумом, так и информационным сигналом или даже волшебной музыкой. Внезапно сработавшая ночью автомобильная сигнализация для владельца - полезная информация, но для остальных - шум, а громкий радостный детский смех звучит музыкой для родителей, но не для живущих по соседству.

Техногенный шум стал опасен для здоровья только в ХХ веке. Но и в старое доброе время, до наступления эры технического прогресса, жизнь человеческого сообщества тишиной не отличалась. Даже в Древнем Риме жители жаловались, что уличный шум не дает им спать по ночам, и Юлий Цезарь в 50 году до н. э. запретил движение экипажей по ночному городу. Королева Англии Елизавета I (1533-1603), заботясь о ночном покое своих подданных, запретила скандалы и громкие семейные ссоры после десяти часов вечера. В те счастливые времена супружеский разлад был чуть ли не единственным источником шума!

Когда говорят об уровне шума, обычно имеют в виду его интенсивность, которая определяется как поток энергии, приходящейся на единицу площади поверхности (например, ватт на квадратный метр, Вт/м2). Однако интенсивность обычных шумов в этих единицах выражать довольно трудно.

Дело в том, что ухо - уникальный аппарат, созданный природой, - улавливает звуки с разницей интенсивности в 10 триллионов раз. Оперировать числами, лежащими в таком широком диапазоне, крайне неудобно. Для характеристики уровня шума приняли логарифмическую шкалу величин, поскольку по ней изменение интенсивности шума на одну единицу в действительности означает изменение в 10 раз. Логарифмическую единицу интенсивности звука назвали "бел" (Б) в честь изобретателя телефона Александра Грейама Белла (1847-1922). На практике оказалось удобнее пользоваться десятыми долями бела - децибелами (дБ). Заметим, что децибел - величина относительная: за 0 дБ принято значение 10-12 Вт/м2. Это порог слышимости, с которого человеческое ухо начинает воспринимать звук. Предельный же уровень интенсивности шума, вызывающий болевые ощущения, равен 130 дБ, или 10 Вт/м2 (таков шум реактивного самолета на испытательном стенде на расстоянии 50 м). Изменение уровня интенсивности шума на 3 дБ соответствует изменению интенсивности звука в 2 раза, на 6 дБ - примерно в 4 раза и т. д.

В децибелах также измеряют звуковое давление, которое определяется как сила, приходящаяся на единицу поверхности (ньютон на квадратный метр, Н/м2). В этом случае за 0 дБ принимается величина 2x10-5 Н/м2.

Другая характеристика шума - число звуковых колебаний в одну секунду, или частота звука, измеряемая в герцах. Один герц (1 Гц) равен одному колебанию в секунду. Нота "ля" первой октавы соответствует частоте 440 Гц. Ухо человека в молодом возрасте воспринимает звуки в диапазоне частот от 20 до 20 000 Гц. Инфразвуковые колебания, то есть колебания с частотами ниже 20 Гц, человек не слышит, но ощущает. С возрастом верхняя граница восприятия звука уменьшается и к тридцати годам составляет 15 000-17 000 Гц.

Наше ухо по-разному воспринимает звуки, имеющие одинаковый уровень интенсивности, но разную частоту: звуки с низкой и высокой частотой кажутся тише, чем среднечастотные той же интенсивности. Из-за этого при измерении уровня шума неравномерную чувствительность человеческого уха к звукам разных частот приходится модулировать с помощью специальных частотных фильтров, измеряя так называемый взвешенный уровень звука. Полученная в результате измерений величина имеет размерность дБА. Здесь буква А означает, что взвешенный уровень звука получен с использованием частотного фильтра типа А.

Шумы окружают человека повсюду. Рано утром звон будильника громкостью 55-80 дБА поднимает с постели. Электробритва гудит с громкостью 70-90 дБА, а кофемолка - около 70 дБА.

За завтраком вы слушаете по радио музыку - это 50-70 дБА, шум транспорта на улице достигает 70-80 дБА. А на производстве интенсивность шума доходит до 80-90 дБА и выше. Вечером вы, возможно, зайдете в кафе, чтобы "отдохнуть" под 80 дБА "живого звука", или посидите дома у телевизора с громкостью 60-70 дБА. И, наконец, под тихое, всего лишь в 25-35 дБА, тиканье будильника вы засыпаете. Кстати, в соответствии с московскими городскими санитарными нормами шум в квартире с 7 утра до 11 вечера не должен превышать 40 дБА, а с 11 часов вечера до 7 часов утра - 30 дБА.

Находясь на улице или на рабочем месте, мы не замечаем шумы более громкие, чем дома, где, согласно исследованиям, человеку не мешает шум громкостью около 40-45 дБА днем и 35 дБА ночью.

Слух человека обладает замечательной адаптационной способностью: при воздействии громкого шума порог слышимости повышается. Поэтому после пребывания в шумном месте вы некоторое время не слышите тихих звуков, затем острота слуха восстанавливается. Но если шумовые воздействия повторяются, то период частичной глухоты удлиняется, а затем слух перестает восстанавливаться совсем. В результате человек теряет способность слышать тихие звуки - наступает тугоухость. Опасность глухоты возникает в том случае, если на человека много лет в течение рабочего дня действует шум со средним уровнем выше 85 дБА. Согласно оценкам, примерно 10-15% людей, работающих в промышленности, подвергаются шуму с уровнем выше 90 дБА, а 15-20% - выше 85 дБА. Больше всего страдают от шума люди, работающие в черной и цветной металлургии, в текстильной промышленности и подземном строительстве. Здесь нередки шумы интенсивностью выше 100 дБА.


Тугоухость легко "заработать" во время занятий стрелковым спортом, на автогонках. Молодежь сильно рискует получить ее на концертах, где мощность акустических систем составляет десятки киловатт. Вблизи стадионов отмечается уровень шума 60-70 дБА, у пляжей - 72-78 дБА, на трассе мотоциклетных гонок и автогонок - выше 120 дБА.

К сожалению, в нашей стране к вопросам обеспечения нормальной акустической среды никогда не относились серьезно. Между тем с городским и производственным шумом можно и нужно бороться. В развитых западных странах к проблеме снижения шума в городах подходят куда более строго: для градостроителей предусмотрены жесткие нормативы уровня шума. В 1981 году в Амстердаме городские власти пошли на затрату 7 млн гульденов, чтобы снизить шум вдоль одной из магистралей города на 7 дБ. В последние годы и в России (в основном в Москве и Московской области) стали уделять внимание защите от транспортного шума. В качестве примера можно привести шумозащитные экраны третьего транспортного кольца и ряда магистралей федерального значения.

Чтобы разобраться в способах снижения шума, обратимся к основам акустики. Распространяясь от источника, звуковые волны либо прямо попадают на слуховой орган человека, либо, например, встречая на своем пути преграду, возбуждают в ней механические колебания. Те в свою очередь снова возбуждают звуковые волны, которые, в конце концов, воздействуют на человеческое ухо. Защита человека от шума может быть осуществлена тремя основными способами. Во-первых, путем создания преград на пути распространения шума (звукоизоляция). Во-вторых, ослаблением звуковых волн по пути распространения (звукопоглощение). И, наконец, применением индивидуальных средств защиты.

Рассмотрим наиболее распространенный способ уменьшения шума - звукоизоляцию. В диапазоне средних частот величина звукоизоляции определяется так называемым законом массы: чем тяжелее конструкция (стена, потолок, окно, дверь), тем эффективнее она задерживает звук и тем меньше звука проходит дальше. Увеличивая плотность стены в два раза, мы повышаем звукоизоляцию примерно вдвое (то есть уровень шума уменьшается на 6 дБ). Именно поэтому не стоит доверять рекламной информации про обои, обеспечивающие эффективную звукоизоляцию. Звукоизоляция окон определяется в основном весом стекол, конструкцией рамы и расстоянием между стеклами: увеличение зазора между ними приводит к увеличению звукоизоляции, особенно в области низких частот. В современных пластиковых окнах высокая звукоизоляция достигается благодаря большому весу стеклопакета (70 кг и более) и хорошему уплотнению рамы.

Шум проникает в дверные зазоры, щели в окнах, незаделанные стыки в стенах. Порой небольшая щель сводит на нет дорогостоящие затраты на создание звукоизолирующей перегородки. Так, например, щель шириной всего 2 мм по периметру двери площадью 4 м2 повышает уровень шума в квартире на 15 дБ, то есть уменьшает звукоизоляцию почти в 5 раз.

Если вас беспокоит уличный шум, в первую очередь следует обратить внимание на окна, которые обладают меньшей звукоизоляцией по сравнению со стенами дома. Если же шум проникает в ваш дом из квартиры соседей, то, возможно, между стеновыми панелями и полом есть зазоры. Увеличить существенно звукоизоляцию самих стен практически невозможно, так как для этого необходимо вдвое увеличить вес стены. То же относится к междуэтажным перекрытиям. Ослабить шум от топота ног над головой можно, только попросив соседей надеть мягкие тапочки либо убедив их постелить ковер.

Снизить уровень шума можно с помощью звукопоглощающих материалов, которые уменьшают интенсивность звуковых волн, отраженных от стен, потолка и других поверхностей помещения. В современных зданиях потолок, как правило, облицован, а стены покрыты плитками с мелкими дырочками или волокнистой поверхностью. Это - звукопоглощающие покрытия. Звуковая энергия переходит в них в тепловую за счет трения частиц воздуха в микропорах звукопоглощающего покрытия. Обычно такие покрытия имеют небольшой вес и не могут быть использованы в качестве звукоизоляционного материала.

Использование звукоизолирующих преград не приводит к уменьшению энергии шума, как в случае звукопоглощающих покрытий, а просто перераспределяет ее: энергия накапливается перед преградой.

Поэтому для достижения максимального эффекта звукоизолирующие преграды обязательно дополняют звукопоглощающими покрытиями. Один из известных советских акустиков Б. Д. Тартаковский образно сравнил акустическую энергию с неприятелем, который преодолевает полосу заграждений. Если "врага" не уничтожить, то рано или поздно он преодолеет все преграды. Звукопоглощающее покрытие как раз и "уничтожает" энергию шума, "застрявшую" у звукоизолирующей преграды.

При использовании звукопоглощающих покрытий уровень шума изменяется мало, зато заметно меняются акустические характеристики помещения: уменьшается гулкость (реверберация), речь становится разборчивой, не искажается музыкальное восприятие. Именно поэтому звукопоглощающие покрытия широко применяют при строительстве концертных залов, студий звукозаписи и других помещений, к которым предъявляются определенные акустические требования (см. "Наука и жизнь" № 2, 2006 г.). Использование звукопоглощающих покрытий требует акустического расчета, поскольку как недостаточное, так и избыточное звукопоглощение приводит к неприятным ощущениям. Например, в специальных измерительных камерах, где стены практически не отражают звука и непроницаемы для внешнего шума, можно услышать даже стук собственного сердца, но продолжительное пребывание в ней вызывает чувство угнетения.


Следует учитывать, что звук может передаваться не только по воздуху, но и по конструкциям: стенам, трубам, перекрытиям. В них акустическая энергия распространяется в виде упругих колебаний (вибраций). В большинстве случаев возникновение шума происходит из-за преобразования энергии вибраций в звуковую энергию. Звук исходит от колеблющихся поверхностей машин, механизмов, перегородок и т. д. Очень хорошие источники звука - тонкостенные металлические поверхности, которые эффективно излучают звуковую энергию в окружающую среду в широком диапазоне частот.

Энергию упругих колебаний можно достаточно эффективно уменьшить с помощью так называемых вибропоглощающих покрытий. Возьмем две одинаковые по форме пластины, сделанные из металла и пластмассы, подвесим их на нити и ударим чем-нибудь твердым. В пластмассовой пластине колебания утихнут быстро, а металлическая будет "звенеть" еще некоторое время. В пластмассе акустическая энергия эффективно преобразовалась в тепловую. Для уменьшения излучения звука поверхности на нее наносят вибропоглощающее покрытие, в котором колебания затухают, как в пластмассовой пластине. Вибропоглощающее покрытие должно обладать большой жесткостью и высокими внутренними потерями акустической энергии. Чем больше жесткость покрытия, тем бoльшая часть энергии колебаний будет затрачена на его деформацию, а чем больше внутренние потери, тем больше энергии перейдет в тепло.

Вибропоглощающие покрытия широко применяются в автомобилестроении - для внутренней облицовки кузовов машин, в авиастроении - для нанесения на внутренние части фюзеляжей самолетов и т. д. Но не всегда использование того или иного вибропоглощающего покрытия дает положительный результат. Так, например, для снижения шума и вибрации отбойного молотка вибропоглощающее покрытие неэффективно.

Другой способ борьбы с вибрацией - виброизоляция. Для ее создания используется тот же принцип, что и для звукоизоляции: требуется такое препятствие, чтобы от него отразилось как можно больше энергии. С этой целью применяют упругие вставки (амортизаторы). Их устанавливают между работающей машиной или механизмом и его фундаментом. Обычно амортизаторы делают из резины, или они представляют собой стальные пружины. Важно правильно выбрать амортизатор, иначе виброизоляция может оказаться малоэффективной, а в ряде случаев вибрация даже усилится.

Защититься от шума можно и с помощью индивидуальных средств защиты. Прежде всего, это ушные протекторы. Первый тип протектора - тампон или заглушка из мягкого материала, предназначенная для разового применения. Если просто заткнуть ухо кусочком ваты, то эффект звукоизоляции будет мал, поскольку вата обладает небольшой плотностью и слишком пористая. В аптеках можно купить специально сконструированные утяжеленные вставки в ухо "Беруши" из волокнистого материала. Они обладают хорошими звукоизолирующими свойствами и гигиеничны. Иногда в продаже встречаются специальные пластмассовые заглушки-пробки разных размеров.

Но все же гораздо более эффективно предохраняют от шума наружные ушные протекторы, или наушники. В числе их недостатков - неудобство и неприятные ощущения, возникающие при длительном ношении. Зато наушники обеспечивают хорошую звукоизоляцию, а с помощью жидкого уплотнения в специальных валиках - амбушюрах - достигается плотное прилегание к уху. При очень высоком уровне шума - выше 130 дБ (например, на стендах для испытаний авиационных реактивных двигателей) - недостаточны и наушники. В этом случае для защиты от шума приходится использовать специальные звукоизолирующие шлемы.
Кстати, наушники высокого класса для прослушивания музыкальных программ обязательно должны обеспечивать хорошую звукоизоляцию от внешнего шума. У наушников большинства плееров звукоизоляция мала, поэтому в шумной обстановке, например в метро, многим меломанам приходится увеличивать громкость звучания, что не только нарушает покой окружающих, но и может привести к тугоухости самих любителей музыки.

Герой одного из фантастических рассказов Артура Кларка, придя в концертный зал, достал из кармана изобретенный им прибор и "выключил" голос непонравившейся ему певицы. Спустя тридцать лет, в конце ХХ века, так называемые системы активного снижения шума и вибрации перекочевали со страниц книги в реальную жизнь.

Как же работают такие системы? В начале XVIII века Томас Юнг открыл интерференцию звука. Две звуковые волны от разных источников с одной частотой, накладываясь одна на другую, могут образовывать области повышенного и пониженного уровня звука. Если волны распространяются в одном направлении, то, варьируя их параметры, в определенной области можно получить полное гашение распространяющейся звуковой волны. На этом явлении был основан способ уменьшения шума, предложенный еще в 1933 году в Германии Полем Луэгом. Но тогда практическое использование активных акустических систем оказалось технически невозможным.

В 1970-х годах изящное теоретическое решение нашел советский физик Г. Д. Малюжинец. Он предложил окружить источник шума замкнутой поверхностью, пропускающей звук, на которой определенным образом расположены приемники и излучатели звука. Звуковая волна, падающая на такую поверхность изнутри, выходит наружу, полностью повторяя форму исходного звукового поля, но в противофазе с исходной волной. В результате происходит гашение звукового поля произвольной формы в широком диапазоне частот. Чуть позже подобная система была предложена во Франции М. Жесселем. В настоящее время развитие методов активного гашения звука находится в стадии бурного роста. Достаточно сказать, что более 60% всех публикаций в мире по вопросам борьбы с шумом посвящены именно активному гашению.

Современная технология активного гашения звука представляет собой достаточно сложную систему со специфическими алгоритмами управления. Она состоит, как правило, из приемников звукового сигнала, управляющего процессора и совокупности источников гасящего звукового поля. Используются различные алгоритмы: одни позволяют гасить поле в заданной области, другие уменьшают излучаемую звуковую энергию в целом, третьи могут использовать смешанные критерии управления в зависимости от поставленных задач. Такие системы применяются для создания активной звукоизоляции, активной виброизоляции, а также высокоэффективных индивидуальных средств защиты от шума ("активных наушников"). Акустические активные системы позволяют улучшать акустические характеристики концертных и других залов в тех случаях, когда методы звукопоглощения дают малый эффект или когда требуется, чтобы в зале акустические характеристики менялись в зависимости от мероприятия. В будущем такие системы непременно найдут применение и в городских квартирах. Только с помощью активного гашения звука можно уменьшить шум, проникающий с улицы при открытом окне.

Одна проблема: стоимость систем активного гашения достаточно высока - намного выше стоимости аналогичных пассивных систем. Однако не стоит забывать, что в ряде случаев методы активного гашения оказываются единственным доступным способом снижения шума.

Уровень окружающего шума в мире ежегодно растет. В основном это связано с увеличением удельной мощности машин, ведь звуковая энергия производственного процесса составляет определенную долю от общей выработанной машинами энергии. Кроме того, во всех отраслях промышленности наблюдается стремление облегчить конструкции машин и механизмов, уменьшить металлоемкость. А это означает, что их звукоизоляция тоже уменьшается. К счастью, перечень средств борьбы с шумом также постоянно увеличивается, а сами средства совершенствуется. Пока же единственный фактор, существенно ограничивающий широкое использование средств защиты от шума, - необходимость дополнительных финансовых затрат. Но никакие средства борьбы с шумом не помогут, пока каждый не начнет уважать покой окружающих.   Громкость звука, определяемая величиной звукового давления, воспринимается человеческим ухом по-разному - на низких и высоких частотах хуже, на средних (от 2 до 5 кГц) - лучше. Это различие усиливается при низком уровне звукового давления. На графике приведены так называемые кривые равной громкости. Хорошо видно, что порог слышимости (0 дБА - нижняя кривая) при частоте 50 Гц приходится на интенсивность звука в 40 дБ, а при частоте 2 кГц (это примерно соответствует частоте жужжания комара или тихого шелеста листвы) интенсивность звука практически равна 0. Кривая болевого порога (120 дБА - верхний график) не менее характерна - низкие звуки, например раскаты грома, слышны хуже, чем высокочастотный рев сирены. На промежуточных уровнях (кривая равной громкости - 60 дБА) одинаково громкими могут казаться гул промышленного вентилятора (80 дБ при 50 Гц), разговор двух людей (60 дБ при 400-600 Гц) и пение соловья (50 дБ при 5 кГц).